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Executive Summary
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Problem Statement:

« Various endpoints are used at various stage of drug development in oncology
but what is their predictive value?

* Multiple sources of data can be integrated using drug-disease modeling to
predict clinical outcome and rationalize drug combinations

QCP Approach:

« A statistically valid basis for modeling and interpretation of longitudinal
response dynamics, in the context of time-to-event (survival) has been
developed and validated

* Modeling of trial-level survival data will inform individual-level joint models of

tumor size and survival to make earlier trial prediction
IMED Biotech Unit



Three Modelling Approaches Can Make Maximal Use of Data
In Oncology

1. Bayesian Meta-Analyses
Trial-level data linking PFS & OS

2. Bayesian Joint Modeling
Patient—level tumor size dynamics
— and possibly other covariates/biomarkers - to predict PFS & OS

3. Quantitative Systems Pharmacology
Integration of biology & pharmacology to predict, in context,
tumor size dynamics and key biomarkers

3 IMED Biotech Unit



Context

* Suppose we observe repeated measurements of a clinical biomarker on
a group of individuals

* May be clinical trial patients or some observational cohort

Collection of clinical biomarker
from patients
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* In addition we observe the time to some event endpoint, e.g. death
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Example data measured in oncology

Target lesions

IMED Biotech Unit

percent progression-free survival

Percent survival

100+
H .
s

604

First-line TKls (n = 118)
10.95 months, 95% Cl, 9.41-12.50

First-line chemotherapy (n = 127)
5.62 months, 95% CI, 4.84-6.40

Adjusted HR = 0.44, P < 0.001

PFS

Months

First-line TKIs (n = 118)
27.70 months, 95% Cl, 22.58-32.81

__ First-line chemotherapy (n = 127)

23.13 months, 95% CI, 19.87-26.39
Adjusted HR = 0.73, P = 0.097

Months

Images from Fournier L et al 2014
KM plots from Xu et al 2016



Problem: Rich longitudinal tumor dynamic data are reduced to categorical
endpoints with a subsequent loss of information

RECIST! data Reduction to
Single Values:
Time (months) 0 2 5 7 10 Time to
. 10 mo.
. 6 cm Progression
Target Lesion SLD? 4com \ ”
(cm) 5 om o _—° Best Overa oR
Response
Non-target Lesion SD SD | SD SD Best Percent
: 55%
New Lesion No | No | No | Yes Change in SLD
Response PR PR | PR | PD

1. RECIST = Response Evaluation Criteria In Solid Tumors CR = Complete Response
2. SLD = Sum of Longest Diameters of target lesions PR = Partial Response
SD = Stable Disease

PD = Progressive Disease
IMED Biotech Unit Slide from Andy Stein, Novartis, PhUSE 2013



“Traditional” Sequential Approach : Longitudinal Modeling
Provides Covariates to Event Model

Event modeling
(Cox Proportional

Two-stage

Tumor Dynamics
Longitudinal covariates,

SCINENEREVIETHES TS Scquential approach Hazard)
8 weeks, etc

Change in N
Survival _ Target Lesion Treatment [*| Baseline
[Days] Size Arm tumor size
(Ay = %)
Survival Hazard —~ al*Ay az*Trt a3* Tumorbaseline

{al, a,, a;} are Cox coefficients linking each patient measurement to Survival

Wang Y et al.: Elucidation of Relationship between Tumor Size and Survival in NSCLC Patients Can Aid Early Decision Making in

Clinical Drug Development. Clin Pharmacol Ther 2009; 86(2):167-174.
IMED Biotech Unit



2. Joint Modeling of Tumor Size Dynamics, Biomarkers and
Other Baseline Covariates to Improve Prediction of Outcome

8

. . A iati bet . .
Tumor size dynamics tumor dynamics and Patient & trial outcome
modeling outcome modeling
I -

Treatment effect on Treatment effect
tumor dynamics on survival

Drug treatment

Dose, dosing regimen

IMED Biotech Unit
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What is “joint modelling” of
longitudinal and time-to-event data?

e Treats both the longitudinal biomarker(s) and the event as outcome
data
* Each outcome is modelled using a distinct regression submodel:

e A (multivariate) mixed effects model for the longitudinal

outcome(s)
* A proportional hazards model for the time-to-event outcome
* The regression submodels are linked through shared individual-specific

parameters and estimated simultaneously under a joint likelihood

function



Why use “joint modelling”?

e Want to understand whether (some function of) the longitudinal outcome is associated
with the risk of the event (i.e. epidemiological questions)

* Joint models offer advantages over just using the biomarker as a time-varying covariate
(described in the next slide!)

* Want to develop a dynamic prognostic model, where predictions of event risk can be
updated as new longitudinal biomarker measurements become available (i.e. clinical risk
prediction)

e Possibly other reasons:

* e.g. adjusting for informative dropout, separating out “direct” and “indirect” effects of treatment



Yijm(t) is the value at time ¢ of the

. . mt longitudinal marker (m = 1, ..., M)

Joint model formulation for the £ individual (i = 1, .., N)
atthe j ™ time point (j = 1, ..., nyy)

T/ is “true” event time, C; is the censoring

e Longitudinal submodel time

Ti = min(Tl-*, Cl) and di = I(Tl* < Cl)

Yijm (t) follows a distribution in the exponential family with expected value u;;m, (t) and

Nijm (t) Im .uljm (t)) = xl]m(t)ﬁm + Zl]m(t)blm

[ ] b; ~ N(0,X)

e Event submodel
h;(t)

= ho(t) exp| wF )y + z am Uim (L)
m=1



Joint model formulation

* Longitudinal submodel

Yijm(t) is the value at time ¢ of the
mt longitudinal marker (m = 1, ..., M)
for the i " individual (i = 1, ..., N)
atthe j ™ time point (j = 1, ..., nyy)
T/ is “true” event time, C; is the censoring
time
T, = min(T}, C;) and d; = I(T; <C))

Yijm (t) follows a distribution in the exponential family with expected value u;;m, (t) and

Nijm (t) Im .uljm (t)) = xl]m(t)ﬁm + Zl]m(t)blm

[ ] b; ~ N(0,X)
e Event submodel
h;(t)
= ho() exp | W ()Y + X
m=1

* Known as a current value “association structure”




Yijm(t) is the value at time ¢ of the
J . d I f I . mt longitudinal marker (m = 1, ..., M)
oint model tformulation for the i ™ individual (i = 1, ..., N)
atthe j ™ time point (j = 1, ..., nyy)
T/ is “true” event time, C; is the censoring

e Longitudinal submodel time
Ti = min(Tl-*, Cl) and di = I(Tl* < Cl)

Yijm (t) follows a distribution in the exponential family with expected value u;;m, (t) and

nijm(t) =9m (.uijm(t)) = xl?}m(t)ﬁm + Zg}m(t)bim

bil
= bi ~ N(O’ z) yl-jm(t) is both:
bim - error-prone
- measured at discrete times
e Event submodel Whg:fj:#;";(t) is both:
h; (t) - modelled in continuous time
M
= ho(t) exp | wl (t)y + Z U Ui (t Therefore less bias in ay,
ot) exp (Y m Him (1) compared with a time-dependent
m=t Cox model.

* Known as a current value “association structure”



Joint modelling software

An abundance of methodological developments in joint modelling

But not all methods have been translated into “user-friendly” software

Well established software for one longitudinal outcome

e e.g. stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)

Recent software developments for multiple longitudinal outcomes

* R packages: rstanarm, joineRML, JMbayes, survtd

Each package has its strengths and limitations

* e.g. (non-)normally distributed longitudinal outcomes, selected association structures, speed, etc.



Joint modelling software

An abundance of methodological developments in joint modelling

But not all methods have been translated into “user-friendly” software

Well established software for one longitudinal outcome

e e.g. stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)

Recent software developments for multiple longitudinal outcomes

* R packages:|rstanarm,|joineRML, JMbayes, survtd

Each package has its strengths and limitations

* e.g. (non-)normally distributed longitudinal outcomes, selected association structures, speed, etc.



Stan
Bayesian joint models via Stan crv brary b
f
fu_II Bac;resian
¢ Included in rstanarm version > 2.17.2 inference

rstan

R
interface
for
Stan

»

rstanarm

R package
for
Applied
Regression
Modelling

¢ https://cran.r-project.org/package=rstanarm

¢ https://github.com/stan-dev/rstanarm

Can specify multiple longitudinal outcomes
Allows for multilevel clustering in longitudinal submodels (e.g. time < patients < clinics)

Variety of families (and link functions) for the longitudinal outcomes

¢ e.g.normal, binomial, Poisson, negative binomial, Gamma, inverse Gaussian
Variety of association structures

Variety of prior distributions

* Regression coefficients: normal, student t, Cauchy, shrinkage priors (horseshoe, lasso)
Posterior predictions — including “dynamic predictions” of event outcome

Baseline hazard

e B-splines regression, Weibull, piecewise constant

17


https://cran.r-project.org/package=rstanarm
https://github.com/stan-dev/rstanarm

Iressa IPASS Study Was Used to Investigate the Relationship
Between Tumor Dynamics and Survival

Gefitinib (N=609) or Carboplatin + Paclitaxel (N=608)

Hazard ratio for progression or death

e Overall: 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001
* In EGFR-mutant (N=261): 0.48; 95% Cl, 0.36 to 0.64

* In EGFR-wild type (N=176): 2.85; 95% Cl, 2.05 to 3.98

| | | |
0 5 10 15

time since randomization (months)
IMED Biotech Unit
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Mok TS et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009 Sep 3;361(10):947-57



Modeling of Tumor Size Dynamics in Humans

Comparison of approaches

More ‘empirical’ More ‘mechanistic’ (ODES)
d
y(t) = yoe—dt + gt d_{ = net_growth — drug_induced_decay

Limitations

* Does not account for varying dose
information (e.g., dose de-escalation and
modification)

Limitations
* Models have more parameters than

empirical models; more information
needed need to identify parameter values

Cannot be used to extrapolate tumor
dynamics to different dosing regimens
(incl. discontinuation) within a study or

across studies
19 IMED Blotech oni
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ne moadel with two tumaor cell clones
(drug-sensitive and drug-resistant)

lKill P(s) cells
proliferation
Hypoxia induced
P ( S ) transition
{ ——_>
P( R) \ Oxygen
consumptior

TAF
production

Q/N

P(s) and P(r) might differ in:

1) Intrinsic proliferation rate;

2) Resistance to hypoxia;

3) Angiogenesis capability;

4) Sensitivity to CTLs attack and/or immunogenicity

~N

Slow constant decrease
of necroticvolume

P(S) and P(R)- drug-sensitive and drug-resistant clones of tumor cells;
Q/N - quiescent/necrotic tumor regions;

TAF - tumor angiogenesis factors
IMED Biotech Unit



Modeling of Tumor Size Dynamics in Humans

More ‘empirical’ More ‘mechanistic’ (ODES)
d
y(t) = yoe—dt + gt d_{ = net_growth — drug_induced_decay

Middle ground

Use inference from mechanistic modelling to guide
priors on parameters after progression

21 IMED Biotech Unit



Joint Model with an Empirical Mean-Shift Longitudinal
Submodel for Tumour Burden

Basic Joint Model structure for survival and longitudinal biomarker(s):

{hi (t|M;(8)) = ho(t)exp{y' w; +n{ pM1pi (t) + Mmoo (t)}
yoi (t) = moi () +eas(t) ] ! \

With tumour diameter defined by:

Bixger ~ N ( Aoy + Apgef + (Ao + Aspgef)base. sld, 0%)

2
Qixger ~ N (Xoa + Aiaget, 0q) Mean shift: gef terms set to 0
T'Soixges ~ N( Aot + A gef, O'%SO) after progression events

Stan and a branch of the R package rstanarm were used to fit this model. Many

IMED Biotech Unit thanks to Sam Brilleman, the Stan developers, and the authors of rstanarm.



2. Joint Modeling:

Example from Iressa IPASS Study

23

Consider 2 patients

Same baseline
covariates (same
dosing, EGFR
status, WHO
performance status)

IMED Biotech Unit

250

Tumour Burden (mm)
= o S
o o o

(%)}
o

Subject [ E1742620 %1 E1852874

months

10 15

Showing 80% posterior CI

100%

75%

50%

25%

0%
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2. Joint Modeling: Example from Iressa IPASS Study

= Consider 2 patients

= Same baseline

: Subject #IE1742620 1 E1852874
covariates (same

dosing, EGFR 250 100%

status, WHO -

performance status) £ 200 75% &
— <
c <
% 150 o
S 50% U
m o
100 o
> )]
O O.
g “ 25% =
3 <

O : 00/0
0 5 10 15
months

Showing 80% posterior ClI

24 IMED Biotech Unit



2. Joint Modeling: Example from Iressa IPASS Study

= Consider 2 patients

= Same baseline

: Subject #1E1742620 ¥/ E 1852874
covariates (same .

dosing, EGFR 250 100%

status, WHO —

performance status) £ 200 75% &
— <
c <
% 150 S
S 50% 0O
m o
. 100 o
- Q
o) o
E 0 25% =
2 <

0 : 0%
0 5 10 15
months

Showing 80% posterior ClI

25 IMED Biotech Unit



2. Joint Modeling:

Example from Iressa IPASS Study
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Consider 2 patients

Same baseline
covariates (same
dosing, EGFR
status, WHO
performance status)

IMED Biotech Unit

250

)

m
— — M
o (o) o
o o o

Tumour Burden (m

a0
o

Subject = E1742620+ E1852874

months

10 15

Showing 80% posterior CI

100%

75%

50%

25%

0%

Aligeqold [eAnng



2. Joint Modeling: Example, gefitinib (EGFR inh) & chemotherapy

27

Probability of PFS

IMED Biotech Unit

0.6

0.0

0.6

0.0

EGFR+ patients
gefitinib 250 mg

5 10 15 20

EGFR+ patients
carboplatin / paclitaxel

5 10 15 20

Time, months

0.6

0.0

0.6

0.0

EGFR- patients
gefitinib 250 mg

ttiv

1S

EGFR- patients
carboplatin / paclitaxel

20

1\
LI

— Trial data

— Model data

Time, months
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Probabilitv of OS

Bayesian Joint modeling in Stan using b-spline and no lag time

Joint model validated on Model predicts OS
data using baseline data cut-ofif

- Posterior predicted values on IFUM (external validation

1 : OO Dym:ﬂln pFE;’GﬂﬂHS ft\t using baseline Iunltudma\(da:a only t )
PHASE 3 1
Model PHASE 4
0.75 simulations
Observed ’/
0.50 survival
0.25
0.00 ‘ — ) _ ! "
0 5 10 15 20 25

0 5 10 15 20 25
Time, months

Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event
28 data. Biometrics 67, 819-829.



Average Tumor Load Trajectory Varies According to
Treatment among EGFR+ Patients

Posterior-Predicted Tumour Burden (mm)

100

Fi}

50

25

Population average values, limited Population average values, adjusted
to observed occasions for censoring & survivorship bias
arm — ARM A GEFITINIB 250 MG — ARM B CARBOPLATIN/PACLITAXEL arm ==/ ARM A GEFITINIB 250 MG ==/ ARM B CARBOPLATIN/PACLITAXEL

90

60

==

Posterior-Predicted Tumour Burden (mm)

0.0 25 5.0 7.5 10.0 125
0 5 10 15 20 months
months Showing posterior 50% CI

IMED Biotech Unit  pok Ts et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009 Sep 3;361(10):947-57



Conclusion

« A statistically valid basis for modeling and interpretation of longitudinal response dynamics, in
the context of time-to-event (survival) censoring, through development of a joint
longitudinal/event model has been developed and validated.

* Modeling of trial-level survival data will inform individual-level joint models of tumor size and
survival to make earlier trial prediction

 The modeling approach can be applied to:
* Predict outcome for early clinical results
* Support ranking of drug combinations
* Optimize late-phase trial designs and/or project survival outcome from early-phase data
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Association structures

* A more general form for the event submodel is

M Qm
hi(6) = ho(®) exp | WEOY + ) ) tmg fmg (B bims )
m=1q=1
* This posits an association between the log hazard of the event and any function

of the longitudinal submodel parameters; for example, defining f,,(.) as:

Nim(t) — Linear predictor (or expected value of the biomarker) at time
t

—dnigl”(t) — Rate of change in the linear predictor (or biomarker) at time t
t

t
j Nim(s) ds — Area under linear predictor (or biomarker trajectory), up to time t
0

Nim (t —u) —> Lagged value (for some lag time u)



Association structures

* A more general form for the event submodel is

M Qm
hi(6) = ho(8) exp <w?(t)y + D> g fng (B bims t))

m=1q=1



Joint Modeling to Predict Survival
Time-dependent mixed-effects model informs hazard

Joint model (first-order): *Survival model may be
( dependent on the rate-of-

h; (€| M;(t)) = hy(t) - exp ()/TWL- + ay-m;(t) + ay - m{(t)) change of tumor size
*Also, delay term may be

) yi(t) =m(t) + &(t) = implemented
\ =x; () B +2; (t) - b; + &(1)
\

Survival submodel updated:
mi(t) = = (x] (t) - B + 2] () - b;)

Longitudinal submodel:

y;(t) — measurements of m;(t) (with error)

x;(t) and S —fixed-effects design matrix and coefficients

z;(t) and b; — random-effects design matrix and coefficients, b;~N (0, D)

rstanarm was used to jointly model
11 IMED Biotech Unit the relationship between tumor dynamics (size) measurements and PFS /0OS



2. Joint Modeling: Example, gefitinib (EGFR inh)

37

Consider 2 patients with
same baseline covariates
(same dosing, EGFR status,
WHO performance status)

Tumour size, mm
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2. Joint Modeling: Example, gefitinib (EGFR inh)

= Consider 2 patients with

same baseline covariates Subject 762 Subject 808

Probability of survival

. 1.0
(same dosing, EGFR status, 9 9
o o)
WHO performance status)
o o
o 0.8 (= -
o) o)
E D B
-N o~
P 0.6 o -
H N S
§ 2 0.4 8 - his
Es g
|_ -~ -— ;
o 0.2 o : =
Ts) T3] _%
o o - E
0.0 T T T T ]
0 5 10 15 20 25 0 5 10 15 20 25
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2. Joint Modeling: Example, gefitinib (EGFR inh)
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Consider 2 patients with
same baseline covariates
(same dosing, EGFR status,
WHO performance status)

Their therapeutic prognoses
differ only because of
differences in tumour
dynamics (baseline &
trajectory)

Tumour size, mm

150 200 250 300 350

50 100

0

Subject 762

0 5 10 15 20 25

1.0

0.8

0.6

0.4

100
|

0.2

50

0
|

0.0

Time, months

150 200 250 300 350
|
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Continuous modeling of endpoints: Joint approach
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Survival

Hazard (relative risk)

Relative tumor size

Time after treatment ini'tiation
|

I

I

I
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1 |

1 1
N |
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I

|
|
|
Time after treatment initiation

b,
M;(t)

y:(D)

t
I
I
I
|
I
1
1
1
I
I
I
I

Time after treatment initiation

» Individual survival function:

S;(t|M;(t)) = exp {— jthi(S|Mi(S)) dS}
0

» Log-likelihood is maximized for {T;, 8,, yi}
e T,;is the time to event

e §;Iis the censoring indicator for ith sub.
e y,(t) is the longitudinal evolution

measured with error!

» Maximization is conditional on baseline
covariates

Ibrahim 2010, J Clin Oncol 28:2796-2801
Rizopoulos 2010, J Stat Soft 35:1-33



Problem: Different clinical endpoints are used in each phase,
but are they correlated and predictive of the next phase?

PRECLINICAL PHASE I, Il PHASE Il
Tumor Growth Tumor Dynamics Progression Free
Inhibition (TGI) Overall Response Rate Survival (PFS)

(ORR) Overall survival (OS)

PROBLEM: Rich longitudinal tumor dynamic data are reduced to categorical endpoints
with a subsequent loss of information

Repeatedly measured tumor size (RECISTY data Reduction to
: Single Values:
Time (months) 0 2 5 7 10
PFS 10 mo.
Target Lesion SLD2 | ©¢M ‘\D_
4 cm _o
(cm) 2.cm ——O——o—" Best Overall PR
Response
New Lesion No | No | No | Yes Maximum change EEo
in SLD 95%
Response PR PR | PR | PD

Slide adapted from Andy Stein, Novartis, PhUSE 2013



Modeling of Tumor Size Dynamics in Humans
Comparison of approaches
More ‘empirical’ More ‘mechanistic’ (ODES)
dy

y(t) = yoe % + gt i net_growth — drug_induced_decay

Advantages

« Simole struct but t t I » Various characteristics of drug effects can be
Impie Sstructure put cannot capture a flexibly modeled:

typgs of treatment response patterns | Dose dependence

Advantages

identifiable parameter estimates across Delay in drug action
different, even small datasets

Drug resistance, drug discontinuation

Limitations

» Does not account for varying dose R
information (e.g., dose de-escalation and Limitations

modification) « Models have more parameters than
Cannot be used to extrapolate tumor empirical models; more information
dynamics to different dosing regimens needed need to identify parameter values
(incl. discontinuation) within a study or

across studies




Joint Model with an Empirical Mean-Shift Longitudinal
Submaodel for Tumor Burden

hi(tl M) = ho(Dexp{yTw; + ami(t) }
yi(t) = m;(?) + €;(?)
m;(t) = fit + TSpie™™"

Where

M) = {mf(s),o <s< z}
a ~ N(0,062)
gi(1) ~ N(0,62)



Spherical model of tumor lesion

JECSY < N
p |\  growth y
o )=
T N
The model assumptions:

1) Spherical geometry of tumor lesion is assumed. Proliferative (P) cells form external “viable rim” of tumor, and Quiescent
(Q) cells form internal core of tumor;

2) P ->Q transition rate is driven by hypoxia and depends on current value of vascular density in P-zone. Q cells elimination
rate is constant and relatively slow;

3) Equilibrium thickness of “viable rim” is independent on tumor diameter, and depends on tumor angiogenesis capability
and P cells resistance-to-hypoxia parameter values;

4) Chemo or target drug kills P cells, not Q cells. g@g
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Step 2: The model with two tumor cell clones
(drug-sensitive and drug-resistant)

P(s) and Pr)might differ in:
1) Intrinsic proliferation rate;
2) Resistance to hypoxia;

o lKiII P(s) cells 3 Angiogenesis capability.
= 4) Sensitivity to CTLs attack and/or
P (S) E;E;’:,‘;‘ ninduced Immunogenicity
> Q/N

P(R) \ Oxygen

consumption

Vascular Slow constant
decrease of necrotic

volume
production

P(S) and P(R)- drug-sensitive and drug-resistant clones of tumor cells;
Q/N - quiescent/necrotic tumor regions;
TAF - tumor angiogenesis factors

45



The model structure and assumptions made

/ P%\ growth
29
N

One clone model

Tumor volume: TV = P+Q

Tumor diameter: TD = 2*(3/41m * TV)"1/3
Tumor surface: TS = 4 m* (TD/2)"1/2

Blood vessels amount: va= dPmax*TS;
Vascular density: vd= va/P;

P cells survival function: Survp = vd/(vd + Kp)

dP/dt = kp*P — kpg * (1 — Survp) * P
dQ/dt = kpg * (1 — Survp) *P — kg* Q
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1) Spherical geometry of tumor lesion is assumed.
P (proliferative) cells form external “viable rim” of tumor;
Q (quiescent) cells form internal core of tumor;

2) Thickness of “viable rim” is independent on tumor diameter,
and depends mainly on dPmax (tumor angiogenesis capability)
and Kp (hypoxia-dependent resistance) parameter values.

?/ 3) Chemo drug kills P cells, not Q cells

Two clones model

Tumor volume: TV = P1+P2+Q

Tumor diameter: TD = 2*(3/41m * TV)"1/3
Tumor surface: TS = 4w * (TD/2)"1/2

Blood vessels amount: va= dPmax*TS,
where dPmax = {dPmax1*P1+ dPmax2*P2}/(P1+P2)
Vascular density: vd= va/(P1+P2);

P1 cells survival function: Survpl = vd/(vd + Kp1)
P2 cells survival function: Survp2 = vd/(vd + Kp2)

dP1/dt = kp*P1- kpq * (1 — Survpl)*P1
dP2/dt = kp*P2— kpq * (1 — Survp2)*P2

dQ/dt = kpg*{(1 — Survp1)*P1 + (1 — Survp2)*P2} —

ka*Q



Individual Risks Estimated Dynamically

The longitudinal and survival components of the joint model are typically linked (joined) through the
relative risk function

Longitudinal tumor modeling for ith subject

: Subject 292

Individual patient time-
dependent slopes

are incorporated in the
model

Tumor size, mm

: l l Cumulative hazard

Subject-specific odds
change with every new
response record

. updated as longitudinal
/ history is accumulated

Hazard (Relative Risk)

0 5 H 10
IMED Blotech Unit Time, months



Association structures

* A more general form for the event submodel is
M Qm
hi(6) = ho() exp <w?(t)y + " g fong B bims t))
m=1q=1

* This posits an association between the log hazard of the event and any function
of the longitudinal submodel parameters
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